
W hat kind of accuracy does your application? This is the
first decision to be made. The decision then comes on
allocating resources to the real time clock: such resources

relate to CPU, network and hardware. Remember that a small piece of
hardware, even if it represents an added cost, will usually save a large
amount of CPU resource. Examples of requirements are:
● Time stamping a sparse set of events
● Time stamping a dense set of events
● Controlling a set of events

Examples of accuracy classes are the T1-T5 classes in IEC 618501:
● Class T1: 1ms
● Class T2: 0.1ms
● Class T3: ±25µs
● Class T4: ±4µs
● Class T5:±1µs

For example, a low resource requirement might involve time-stamp-
ing a sparse set of events at 1ms accuracy. A medium resource require-
ments might be time-stamping a medium dense set of events at 0.1ms
accuracy while controlling a set of events at 4µs accuracy would gen-
erate a high resource requirements.

While trying to pin down the amount of resource to allocate, take the
time to look through the paper given in Reference 2. Doing so will
impart a greater understanding of what you are trying to do and what
steps needed for success.

Representing time values
Throughout IT history, there have been several attempts to represent
date and time values. For industrial network purposes, most of them
are either too coarse (precision in the millisecond range) or too com-
plicated. Fortunately, the dominant time synchronisation protocol
(NTP/SNTP) defines a practical time stamp format. The following
offers a suitable definition2:

NTP timestamps are represented as a 64-bit unsigned fixed-point
number, in seconds relative to 0h on 1 January 1900. The integer part
is in the first 32 bits and the fraction part in the last 32 bits. This for-
mat allows convenient multiple-precision arithmetic and conversion to
Time Protocol representation (seconds), but does complicate the con-
version to ICMP Timestamp message representation (milliseconds).
The precision of this representation is about 200ps, which should be
adequate for even the most exotic requirements.

Note that since some time in 1968 the most significant bit (bit 0 of
the integer part) has been set and that the 64-bit field will overflow dur-
ing the year 2036. Should NTP be in use in 2036, some external means
will be necessary to qualify time relative to 1900 and time relative to
2036 (and other multiples of 136 years).

In IT terms, the time value is represented in seconds as a 64-bit fix-
point value in 32:32 format. The representation is very convenient,
except for two small points. The precision is too high for practical use.
A full-resolution clock frequency would be 4.3GHz. Even if this were
practical, the synchronisation accuracy is limited to about 1µs4. Also an
implementation would have to keep track of the rollover in 2036.

The IEEE1588 time synchronisation standard uses a slightly differ-
ent time representation. The defintion3 says that the Time
Representation type shall be used to specify both Timestamps (time
with respect to an epoch) and Time increments. The upper 32 bits rep-
resent seconds while the lower 32 bits represent nanoseconds. The sign
of the nanoseconds member is interpreted as the sign of the entire rep-
resentation. A negative timestamp indicates time prior to an epoch.

A negative increment results for example from subtracting a times-
tamp A from a timestamp B, where A is an instant later in time than B.

The advantage of this representation is that it is possible to express
negative time. The disadvantage is that specially coded subroutines are
necessary for all arithmetic operations. The same 136-year rollover
rule holds here, but since IEEE1588 chose 0h on 1 January 1970 as the
origin, the first rollover will occur in 2106.

Adjusting the clock speed
A standard grade crystal oscillator has a worst-case error of 100ppm
over its temperature range. Expressed in another way, this means that
if the real time clock starts in exact synchronisation, it may be one bit
wrong after a count of 10,000. Thus, if the real time clock is to be syn-
chronised to a master real time clock with a maximum allowable dis-
crepancy of 0.5µs, it will require resynchronisation every 5ms. This is
no problem if the resynchronisation is done in hardware by a dedicat-
ed connection, but may place an unacceptable load on the system if
resynchronisation is done over a communications network.

We will attempt to design a real time clock which shall be able to
deliver time values with an accuracy of 0.5µs even when resynchroni-
sation events occur at 5ms or much longer intervals.

It follows that the hardware part of the real time clock cannot deliv-
er sufficient accuracy on its own; it needs further hardware or software
encapsulation to correct for accuracy loss. There are several ways of
doing this.
Correction entirely in software. If you want to time stamp a few
events every second and the required precision is in or slightly below
the millisecond range, you will need a hardware timer of some sort. Let
this timer run continuously and synchronise it as discussed in [4]. After
synchronising, the true time depends on the hardware timer as shown
in the following time formula:

T=k*(t–t0)+T0
In this formula, k is the �error slope�, the ratio between a true timer

THE INDUSTRIAL ETHERNET BOOK SEPTEMBER 2004

18

T
E

C
H

N
O

LO
G

Y
IN

S
IG

H
T

Designing and implementing
a high precision clock
for real time networks
Your application needs a synchronised real-time clock.There surely must
be a correct, or even preferred way of doing so? Wrong! No such
implementation presently exists off the shelf. Creating a real-time function
has to be done from first principles. Having decided on the precision
required and the resources available to implement the design, only then is
it possible to figure out the right sort of solution. Svein Johannessen

IEB22_p18 16/8/04 1:27 PM Page 18

and the local hardware timer. T0 is the true time when the clock was
synchronised last and t0 is the corresponding value for the local hard-
ware timer. T is the �true� time and t is the current value of the local
hardware timer.

This approach uses some hardware resources, a moderate amount of
software and CPU resources, and a standard amount of network
resources. It has the advantage in that it is inexpensive in the sense that
no dedicated hardware is used but it requires a moderate amount of
CPU cycles
Mixed hardware/software approach. If an extra timer is available
and it is possible to have the timer create an interrupt, another solution
is possible. It is based on the observation that a commercial low-cost
crystal oscillator has a precision of better than 100ppm, and the ratio
between a �true� timer and the local hardware timer is therefore very
close to 1. If we let k=1+a , we can rewrite the time formula to:

Suppose we want to calculate the absolute time to the nearest
microsecond. In this case the algorithm works like this:
1. Determine the time formula constants k, T0 and t0. Calculate α.
Calculate τ = 1µs/|α|.
2. Set the time constant in the interrupt timer to τ , and start the inter-
rupt timer.
3. Let the interrupt service routine for this interrupt timer increase or
decrease T1 by 1 (depending on the sign of α.
4. Whenever we want to calculate T, we only have to read t and add T1.

The formula for deriving true time is very simple and only requires
a moderate amount of hardware but it does use an interrupt service rou-
tine with associated overhead.

Doing it the analogue way
A varactor (variable capacitance diode) exhibits a capacitance that
depends on the voltage across its terminals. Inserting such a varactor in
a crystal oscillator circuit, Fig. 1, makes it possible to adjust the oscil-
lator frequency over about 350ppm � more than enough for our pur-
poses. Adding an A to D converter and some signal conditioning cir-
cuitry to the hardware allows adjustment of clock speed.

One should note that the required control voltage range exceeds that
of a standard A/D converter, necessitating some signal conditioning
circuitry. Also the relationship between the control voltage and the
oscillator frequency is non-linear.

Clock adjustment by frequency division. An alternative method for
clock adjustment uses variable division ratio on the basic clock frequen-
cy so removing the need for analogue circuitry � apart from the clock
oscillator itself. Changing the divisor applied to the high frequency oscil-
lator changes the clock rate. This system is essentially the same as that
used with dual modulus (pulse swallowing) digital frequency synthesis-
ers found in wireless comms equipment.

The problem with this method is that it is inherently non-linear.
Since we are only able to use integers for divisors, the smallest change
in frequency is dependent on the current divisor. If our nominal divisor
is n, the smallest change is to change the divisor to either n+1 or n�1,
resulting in a frequency change of either:

1/n�1/(n+1) = 1/n*(n+1) or 1/(n�1)�1/n = 1/(n�1)*n

If we only want to change the clock rate by 1ppm, this means that
the start value for n must be 1000. With a basic clock rate of 1MHz,
this means that our crystal oscillator must run at 1GHz!

A related method is to use a VCO frequency synthesiser phase-
locked loop. The output of the frequency synthesiser is divided by a
suitable amount and compared with a reference frequency using a
phase discriminator. The discriminator output is filtered and used as a
control voltage input to the frequency synthesiser, closing the loop.

Unfortunately, there are problems with this method as well. Leaving
aside the fact that a phase-locked loop is hard to design and implement,
the output of the frequency synthesiser must be an integer multiple of
the reference frequency. If we only want to change the clock rate by
1ppm, this means that the reference frequency must be 1ppm of the
basic clock rate. With a basic clock rate of 1MHz, this implies a refer-
ence frequency of 1Hz. Since the phase-locked loop needs a number of
periods to stabilise and with each period being 1s, we are looking at a
response time of several minutes from the clock rate divisor is changed
until the clock rate stabilises at its new value.

Adjustment by pulse control logic
The traditional digital approach to frequency adjustment is thus
impractical for very fine clock rate tuning. It is, however, possible to
approach the problem in another way.

Figure 2 shows one way of implementing both a real time clock and
a fine-tunable clock rate generator in one compact solution.

The clock logic block normally divides the input frequency by 2. If
the Enable bit is set and the Add/Subtract bit indicates Add, the block
inserts an extra pulse whenever the output of the Binary Rate
Multiplier goes high. Conversely, if the Enable bit is set and the
Add/Subtract bit indicates Subtract, the block suppresses one output
pulse whenever the output of the Binary Rate Multiplier goes high.

The OFL bit is set whenever the MSB in the second counter rolls
around from 1 to 0. One implementation is to show this bit in the LSB
position in the time counter and clear it whenever it is read. The clock
interface software should test this bit whenever the clock value is read
and increment a software counter whenever it is read.

The Binary Rate Multiplier is a clever circuit. If its control input has
the binary value m and the number of stages is n, the ratio between the

number of output and input pulses is m/2n. This Binary Rate Multiplier
is connected in such a way that its LSB adds or subtracts one pulse
every 64 seconds. With a length of 16 bits, it can add or subtract a max-
imum of slightly below 1024 pulses every second. In addition, those
extra or missing output pulses are distributed as evenly as possible.
Example. If the specified crystal oscillator has a tolerance of 100ppm
and the pulse count logic is disabled, the maximum error count is 838
with a resolution of 0.12µs. This is entirely within our control range.
After maximum correction this will give us a real time clock with a res-
olution of 0.12µs and a maximum drift of one count (0.12µs) every
64s. Put another way, when the crystal oscillator has stabilised and the
synchronisation is finished, the resulting clock will drift less than 0.5µs
every 256s.

THE INDUSTRIAL ETHERNET BOOK SEPTEMBER 2004

20

T
E

C
H

N
O

LO
G

Y
IN

S
IG

H
T

)()()()()1(0100000 ttTttttTtTttT −∗++=−∗+−+=+−∗+= ααα

D to A
converter

DC
amplifier

From computer bus

Oscillator output
to system

Figure 1. Adjusting the clock frequency with a varactor. Simple in
theory, but complex in actual application

Internal or external
crystal oscillator
16.777216MHz

Clock
logic

Add/
subtract

Enable

23-bit counter 8-bit counter OFL

16-bit
Binary Rate Multiplier

16-bit
correction value

1s

10 6

16

Fig. 2. A real time Clock with clock rate adjustment. This circuit is
able to handle very small corrections to the clock speed.

IEB22_p18 16/8/04 1:27 PM Page 20

Additions and refinements. The real time
clock design as advocated has impressive
specifications, but there are a few possible
additions that would increase the usefulness
of the circuit appreciably. If the data bus inter-
face is narrower than 32 bits, an output latch
is almost mandatory. This allows us to latch
the output of the clock counter and read the
contents of the latch in whatever way we
want.

Another useful addition would be an exter-
nally triggered latch. This would allow a pre-
cise timestamp of an event and the clock
counter could be extended to handle the full
NTP time value. We do not have to use the
full precision (24 bits is more than enough for
automation purposes), so we could keep our
16.772MHz oscillator and assign a fixed
value to the least significant bits.

Adjusting clock offset
Adjusting the clock offset is actually more
complex than it looks, since there are several
restrictions. The clock should not exhibit sud-
den jumps forward. This would result in
events before and after the correction getting
time stamps that are artificially far apart,
which again could be interpreted as a sudden
disturbance in a data collection or as a miss-
ing data set. Neither should the clock ever
make any jumps backward. This would result
in events before and after the correction get-
ting time stamps that are artificially close
together or even being reversed in apparent
time.

A real-time clock may be in one of several
possible states with respect to synchronisa-
tion; these are explained in the following
paragraphs with the state type followed by the
comment on the state:
Invalid. No synchronisation has been
received. Any timestamp request (except for
synchronisation purposes) should return a
value of 0 (in all 64 bits). At the first time
synchronisation, the clock is set according to
the synchronisation value and the state is
changed to Coarse.
Coarse. In this state, the clock speed has not
yet been fully adjusted. Any timestamp
request (except for synchronisation purposes)

should return the time value with only 10 sig-
nificant bits below the decimal point. The rest
of the bits should be set to zero, except for the
most significant of those, which should be set
to one. In this state, no direct clock adjust-
ment is allowed, but the clock speed may be
adjusted according to the discrepancies
between the local clock and the synchronisa-
tion values.
Tracking. In this state, the clock speed adjust-
ment has brought the speed of the local clock
to within a predetermined amount of the ref-
erence clock. There may still be a clock off-
set, however. From this state, there are two
possible outcomes: If the absolute clock off-
set is greater than a predetermined amount,
the clock speed adjustment value is kept and
the state changed to Invalid. Otherwise, the
clock speed is changed in order to bring the
clock offset closer to 0. Whenever the abso-
lute value of the clock offset is lower than a
predetermined amount, the state changed to
Fine. In this state any timestamp request
(except for sync purposes) should return the
time value with a number of significant bits
that reflects the size of the clock offset.
Fine. In this state, any timestamp request
should return with the full precision of the
underlying clock. The clock speed should be
continuously adjusted to keep within the pre-
determined bounds. If the clock offset
exceeds those bounds, the state should be
changed to Tracking.

References
[1] IEC 61850 Communication Networks and Systems in
Substations, Part 5: Communication Requirements for
Functions and Device Models, Part 7-2: Basic
Communication Structure for Substations and Feeder
Equipment, 1999.
[2] David L. Mills, RFC 1305: Network Time Protocol (Version
3), Specification, Implementation and Analysis, 1992.
[3] IEEE Standard for a Precision Clock Synchronisation
Protocol for Networked Measurement an Control Systems,
IEEE Std 1588-2002.
[4] Svein Johannessen, Time Synchronization in a Local Area
Network, IEEE Control Systems Magazine, April 2004.

THE INDUSTRIAL ETHERNET BOOK SEPTEMBER 2004

Coarse

Invalid

Tracking Fine

Clock
speed

tracking

Synchronisation
event

Offset
too great

Clock
offset

within limits

Clock
offset not

within limits

Fig. 3. State diagram for the
real time clock. The
adjustment algorithms and
the timestamp precision are
not shown.

Svein Johannessen is with ABB, Norway

For more information circle 31

C
irc

le
 6

9

IEB22_p18 16/8/04 1:27 PM Page 22

